
54 The Delphi Magazine Issue 36

Optimising Form Handling
by Phil Brown

When a new form is designed
in Delphi, the IDE very con-

veniently adds a variable declara-
tion to the unit and makes the form
AutoCreate. When the application
is started an instance of that form
is guaranteed to exist. The project
source file handles the creation of
these forms, by default adding a
line of code calling Applica-
tion.CreateForm for each form type
as shown in Listing 1 below.

While this approach is very con-
venient (it frees the developer
from the considerations of creat-
ing and releasing the form in a
try..finallyblock each time a new
instance of the form is required)
there are a few disadvantages. The
first is the memory consumed by
each instance of a form: this is allo-
cated once when the application
starts and only released when the
program terminates. For projects
with just a few forms, this is quite
acceptable, but for a large applica-
tion the memory consumed can be
significant. Furthermore, simply
creating all these forms can have a
noticeable impact on the time

required to load the application.
Finally, because a global variable
exists in the unit for each form,
careless developers may re-use
that variable inappropriately (for
example, to hold another instance
of the same form). The use of Auto-
Create for forms also has an unde-
sirable side-effect: if a different
scheme is required to generate
forms (for example, if an applica-
tion requires two instances of the
same form, controlled locally
within a routine), the application
has a mixture of styles for form
instance handling: AutoCreate and
custom routines.

This eclectic mix leaves other
developers not knowing which
approach to use for a particular
form in an application, a problem
compounded by the fact that the
form instance global variables in
each unit have a nasty habit of
lying around in the code, even if
AutoCreate is disabled for that
form, giving the impression that
the variable has been initialised
and is available for use when in fact
it is not. Again, for multi-developer

projects this lack of consistency is
disadvantageous.

The standard approach in these
cases is to turn AutoCreate off for
all forms in the project and create
each form locally as it is required.
The Project|Options menu option
has a tab called Forms which allows
AutoCreate to be disabled for
selected forms, alternatively the
developer can edit the project
source file and simply remove the
Application.CreateForm entry for
those forms where it is not
required.

Fortunately Delphi ensures that
these two alternatives both reflect
any changes made in the other, so
you may choose the code-oriented
approach or the interactive one
depending on personal prefer-
ence. It is a very good idea to edit
the source unit and delete the
global form variable for each form
that you remove from AutoCreate,
this prevents the problems high-
lighted earlier where developers
unwittingly use uninitialised vari-
ables (with disastrous results).

This approach does mean that
you need to create a new instance
of a form each time you want to use
it. The standard way to do this is to
use a local variable and a
try..finally block as shown in
Listing 2. Note that the parameter
passed to the form constructor is
nil, indicating that it has no
parent. This is fine, but we must be
sure to free up the instance when
we have finished with it.

While this approach has the
great advantages of minimum
memory utilisation (only the forms
that are required at any one time
are created) and the use of the
form is very visible (the frmDetails
variable has a very short ‘span’,
the entire collection of references
to frmDetails occur in one proce-
dure, rather than being scattered
throughout the code), the
technique is not without disadvan-
tages. In particular, as the form
instance is created each time it is

program Project1;
uses
Forms,
Unit1 in 'Unit1.pas' {Form1};

{$R *.RES}
begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

➤ Listing 1: The project source file for a new application.

implementation
{$R *.DFM}
procedure TfrmFind.btnDetailsClick(Sender: TObject);
var
frmDetails: TfrmDetails;

begin
frmDetails := TfrmDetails.Create (nil);
try
// initialise form here
frmDetails.Caption := 'Test';
// display form
frmDetails.ShowModal;

finally
// release resources
frmDetails.Free;

end;
end;

➤ Listing 2:
Creating a new instance of a form when a button is pressed.

August 1998 The Delphi Magazine 55

used, there can be a short delay
while the form is initialised, which
can be quite noticeable on low-end
hardware if the form is complex (if
it has a page control with a few
tabs, for example). This delay can
give users a feeling of sluggishness
or lack of response.

Ideally we would have a scheme
in which we could combine the low
memory requirements of dynamic
form creation with the rapid
response of global form variables.
This article will show you how this
can be done, and provided on the
disk is a unit you can use to achieve
exactly that.

Caching Forms
An elegant solution is to have a
cache of forms that are frequently
used and, when a new instance of a
form is required, the cache is
searched to see if there is one
already created that we can use. If
so, and it is not already in use, then
we can simply return that instance
and the elapsed time will be mini-
mal. If an instance of the form is not
available, we can create a new one

and add this to the cache. When
the form is freed we will not actu-
ally free the instance but will mark
it as expired and available for
reuse. In this scenario, although we
will still incur a performance pen-
alty when the form is created for
the first time, the second and sub-
sequent times that it is accessed
will be virtually instantaneous.

The amount of memory con-
sumed by this technique depends
on the number of forms that are
held in the cache. With a large
cache the amount of memory
saved will be small, although you
will improve application load time,
whilst with a small cache the
memory savings will be greater,
although more time will be spent
actually constructing the forms.
The beauty of the scheme is that

the handling of new instances of all
forms can be standardised and the
size of cache adjusted to fit a par-
ticular application. The technique
can also be extended so that the
size of the cache can be adjusted
dynamically at runtime (perhaps
according to the amount of avail-
able memory on the host), so that
the application minimises memory
use on low-end hardware and
maximises performance for larger
machines.

Given that the cache will have
some finite size, consideration
must be given to the case when the
cache has reached the required
capacity. In this situation there will
be no room to store the new
instance. In these situations a new
instance of the form is created on
demand, and this instance

TCachedForm = class (TForm)
public
class function CreateForm: TCachedForm;
procedure FreeForm;

end;

➤ Listing 3: Providing new CreateForm and FreeForm methods to be
used as constructors.

56 The Delphi Magazine Issue 36

replaces the oldest (ie least
recently used) form in the cache,
which is in turn freed. If the cache
contains a full quota of forms
which are currently in use, then
none of the cache entries are candi-
dates for removal, the new form
instance cannot be cached and is
simply destroyed when the form is
released. Alternative strategies are
possible in this situation: for exam-
ple, it would be possible for our
new form to replace the oldest
cache entry, which, being still in
use, cannot be freed at this time.
This approach would work only if
the release mechanism for the
form was able to be aware of such
changes and could free itself if the
original entry could not be found in
the cache.

Although the above caching
requirements sound complex, in
actual fact a very simple implemen-
tation presents itself. The cache
itself can be simply handled as a
list of forms, with very simple
request and release methods, to
return a form instance of the cor-
rect class and to release the same.
Some consideration must be given
to the syntactical usage of the
cache. Ideally, it would be possible
to use the cache in a transparent
manner, so that the code would be
the same as would normally be
used (see Listing 2). Unfortunately,
this is not possible as to do so
would mean that the standard
Create and Free methods would be
redirected to our caching routines.
Unfortunately, the instance is
already partially constructed or

destroyed by the time our Create
or Free is called, even if the Create
is defined as a class function that
returns an object, rather than a
true constructor, as in Listing 3.

Therefore, it is impossible to
reuse the Create and Free methods
names, as they expect to deal with
the real construction and destruc-
tion of objects, rather than the han-
dling of pre-constructed instances.
Seasoned Delphi developers may
be familiar with the NewInstance
and FreeInstance methods on TOb-
ject, which are called by the stan-
dard constructors for memory
allocation purposes, and are
declared virtual so that the con-
struction behaviour of the object
can be customised. This approach
does not prevent the Destroy
destructor from being called, how-
ever, and so therefore cannot be
used in this situation where the
object instance must be retained.

Instead, we must introduce
some new syntax that must be
used throughout the application to
replace standard calls to Create
and Free. To keep the syntax as
close as possible to the original, I
have chosen to call these Create-
Form and FreeForm, and they can be
used as drop-in replacements for
the standard constructors and
destructors. Listing 3 shows the
interface declaration for a new
form, TCachedForm.

One caveat to the above syntax
is that the class function for Cre-
ateForm returns a TCachedForm. This
means that the result of this func-
tion cannot be directly assigned to

a variable declared as a descen-
dant of TCachedForm, you will get a
compiler error. There are two
approaches to overcoming this:
either typecast the result of the
function to the required type
whenever you use the CreateForm
method, or statically override the
CreateForm method in descendant
forms which typecast their result
appropriately.

Both techniques are demon-
strated in Listing 4 and whichever
one is chosen is down to personal
preference. Of the two, I prefer the
second option as it eliminates
typecasts and keeps the syntax the
same as the standard Create
constructor. An alternative is not
to descend from TCachedForm for
your new class and simply imple-
ment a CreateForm and FreeForm
method, as shown by TForm3 in
Listing 4.

Now that we have some way of
centralising form instance han-
dling, we must give some consid-
eration to the routines which will
actually create and destroy forms
for us. These will be implemented
as methods on a new class, TForm-
Cache, which will maintain a list of
cached forms up to some defined
limit. When a call is made to Cre-
ateForm, it will scan through the list
of forms attempting to find an
unused instance of the same type.
If one is located then this is
immediately returned, otherwise
one is constructed and added to
the cache, provided that it has not
grown beyond some definable
limit (initially set at 10). The
TFormCache interface is shown in
Listing 5.

type
TForm1 = class (TCachedForm)
end;

TForm2 = class (TCachedForm)
public
class function CreateForm: TForm2;

end;
TForm3 = class
public
class function CreateForm: TForm3;
procedure FreeForm;

end;
class function TForm2.CreateForm: TForm2;
begin
// note static override of CreateForm method
Result := TForm2 (inherited CreateForm);

end;
class function TForm3.CreateForm: TForm3;
begin
Result := TForm3 (FormCache.CreateForm (Self));

end;
procedure TForm3.FreeForm;
begin

FormCache.FreeForm (Self);
end;
procedure TestForms;
var
Form1: TForm1;
Form2: TForm2;

begin
// create Form1 - need to typecast
Form1 := TForm1 (TForm1.CreateForm);
try
Form1.ShowModal;

finally
Form1.FreeForm;

end;
{ create Form2 - no need to typecast but extra method
required. Creating Form3 would be the same
syntactically as for Form2 }

Form2 := TForm.CreateForm;
try
Form2.ShowModal;

finally
Form2.FreeForm;

end;
end;

➤ Listing 4: Two ways of handling the creation of cached forms.

August 1998 The Delphi Magazine 57

Note that the class is very mini-
malist: only two methods are pro-
vided and three properties. Of
these, MaximumCacheSize is the most
important as it can be written to at
runtime to adjust the size of the
cache. Note that reducing the
maximum cache size does not
always take immediate effect,
forms that are in use cannot be
freed until they are released (any
forms in the cache that are not in
use can be, however). Whenever
forms are created or destroyed,
the cache attempts to ensure that
the MaximumCacheSize limit is not
exceeded. Of course, if the Maxi-
mumCacheSize is increased, the
cache grows to fill the limit as
forms are requested. Applications
can monitor memory usage and
possibly performance and adjust
the cache size dynamically, the
Count and ActiveCount properties
of the FormCache object indicate the
number of current cache entries
and the number that are currently
in use, respectively.

A FormCachingunit is provided on
the disk which you are free to use
in your own projects. Note that a
FormCache object is automatically
constructed and destroyed in the
initialisation and finalisation
stages, as there should only ever
be one instance of the class in an
application. Note that when a form
is returned from the cache, it will
be in the same state as when it was
last released, so you will need to
re-initialise the form controls
appropriately. Generally speaking
this is something you will do
anyway (for example, if you are dis-
playing a dialog for editing the
details of something) and so to
facilitate this the OnCreate event is
called when a form is returned
from the cache. If you always want
a form to be in its design-time state
when it is displayed, it is probably
easiest to use the standard Create
and Free methods, this is probably
not the type of form that needs to
be cached. However, for complex
forms it can still be significantly
quicker to re-initialise a cached
form to design-time values in code
than to recreate it from scratch.

In this article the rationale for,
and an approach to centralising

type
TFormCache = class
public
function CreateForm (FormClassToCreate: TFormClass): TForm;
procedure FreeForm (FormToFree: TForm);
property MaximumCacheSize: Integer;
property Count: Integer;
property ActiveCount: Integer;

end;

➤ Listing 5: The FormCache class public interface.

and optimising form handling has
been introduced. For anything
more than a trivial application,
resource management becomes an
important part of the system and
using a standard technique
throughout the source code
increases reliability and offers
greater scope for future
maintenance.

Philip Brown is a senior consultant
with Informatica Consultancy &
Development, specialising in OO
systems design and training.
When not orienting objects he en-
joys sampling fine wine. Contact
him at phil@informatica.uk.com

Visit our Web site:
www.itecuk.com

What you can find:

➤ Article index
database: online or
downloadable

➤ Details of next issue
➤ Back issues: contents

and availability
➤ Links to other great

Delphi sites
➤ The Delphi Magazine

Book Review Database

	Caching Forms

